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The cellular Potts model �CPM� is a robust, cell-level methodology for simulation of biological tissues and
morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the
extra-cellular fluid or matrix �ECM�. Standard diffusion solvers applied to the cellular potts model use finite
difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the
underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes
advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the
resulting advection-diffusion equations. To circumvent these problems we simulate advection diffusion within
the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid
particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid
particles by local averaging rules which approximate the Laplacian. Directed spin flips in the CPM handle the
advective movement of the fluid particles. A constraint on relative velocities in the fluid explicitly accounts for
fluid viscosity. We use the CPM to solve various diffusion examples including multiple instantaneous sources,
continuous sources, moving sources, and different boundary geometries and conditions to validate our approxi-
mation against analytical and established numerical solutions. We also verify the CPM results for Poiseuille
flow and Taylor-Aris dispersion.
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I. INTRODUCTION

Advection-diffusion equations �ADE� describe a broad
range of natural phenomena. They occur in diverse fields
including physics �1�, chemistry �2�, biology, geology �3,4�,
and even in migration and epidemiology �5�. They describe
the flow �deterministic� and the spread �stochastic� of a den-
sity �of a chemical, heat, charge� which a fluid or deformable
solid carries. The simplest ADE is

�n

�t
= D�2n − �� · �� n , �1�

where n is the density of the transported substance, D its
diffusion constant �here assumed uniform in space�, and �� is
the velocity field. The velocity field in turn couples to the
pressure field of the medium through the Navier-Stokes
equations. Though we can solve the problem analytically in
steady state with simple boundary conditions, most physi-
cally relevant ADEs appear within sets of nonlinear coupled
equations or with nontrivial boundary conditions where ana-
lytical solutions are not possible �6�. Hence a vast literature
exists on how to solve ADEs. Most solvers use either finite
difference �FD� or finite element �FE� �7� schemes. Besides
these deterministic approaches, several schemes use Lattice-
Boltzmann �LB� methods �8� like Flekkoy’s method �9�,
Dawson’s method, �10�, and the moment-propagation
method �11�. ADEs in general are difficult to solve in the
absence of separation of diffusion and advection time scales
or in the presence of moving boundaries. Most lattice-based

methods locally refine the grid during solution to avoid in-
stabilities. Moreover, explicit LB methods require time aver-
aging of the torque to avoid instabilities �12�. Hence the
computational cost of both LB and deterministic methods
shoots up. Nonstaggered FD grids may show grid-
decoupling instabilities �12�. Also, all explicit methods re-
quire consideration of the general stability constraints from
linear analysis, most notably the Neumann diffusive criterion
linking the time step and the square of the grid size. In this
paper we try to address the problems associated with incor-
porating advection diffusion in biologically motivated, mul-
tiscale simulations, specifically those which use the cellular
Potts model �CPM� to model cell behaviors.

Diffusion of morphogens and flow of extra-cellular matrix
�ECM� are crucial to many biological phenomena, including
wound healing, morphogenesis, e.g., during mesenchymal
condensation or gastrulation �13� and the immune response
where cells emerge from the microvasculature and migrate
toward sites of inflammation to kill bacteria, other patho-
gens, and cancer. The generic mechanisms common to all
these processes are changes in cell velocities �chemotaxis�
or/and differentiation in response to the temporal and spatial
variations of chemical morphogens. Other classic examples
of diffusion-driven morphogenesis involve Turing instabili-
ties. Turing instabilities arise due to different diffusion rates
of two or more reacting chemicals resulting in competition
between activation by a slow-diffusing chemical �activator�
and inhibition by a faster chemical �inhibitor�. Pattern for-
mation during morphogenesis due to Turing instabilities is a
subject by itself �14�.

Besides chemotaxis, the formation and rate of extension
of pseudopods which crucially depends on convective mass
transport �15,16� also influences cell motility. Hydrodynamic
shear can also increase cell-cell adhesion efficiency by in-
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creasing the number of binding receptors. Shear has a pro-
found effect on neutrophil-platelet adhesion and neutrophil
aggregation, key events in acute coronary syndromes like
arterial thrombosis ��17��. Extensive work has shown that
both fluid shear amplitude and shear exposure time modulate
the interactions between polymorphonuclear leukocytes and
colon carcinoma cells �18�. Gene expression and protein syn-
thesis in endothelial cells also change upon application of
arterial shear stresses �19�. In a prominent example, fluid
shear allows optimal L-selectin-mediated leukocyte rolling
only above a minimum threshold shear rate �20�. Hence mul-
ticellular modeling tools have to properly account for the
advection-diffusion: Diffusion influencing the spatial and
temporal distribution of chemical morphogens, advection
controlling the rates of cell collisions, deformation, receptor-
ligand bond formation �21�, adhesion, and enhanced mixing
of chemical morphogens.

Simulations of the development of multicellular organ-
isms take diverse mathematical approaches: continuum FE-
based models �22� of reaction diffusion which consider cell
density as a continuous variable �23�, hybrid models like
E-cell �24� and cellular automaton approaches �25�. Glazier
and Graner developed the cell-level CPM, an extension of
the energy-based large-Q Potts model, for organogenesis
simulations �26�. The basic CPM explains how surface bind-
ing energies drive cell movement and models cell sorting
from an initial random distribution into different patterns de-
pending on the cell adhesion coefficients at homotypic, het-
erotypic, and cell-medium boundaries �27�. It also provides a
platform on which to build simulations of a wide range of
biological experiments by including additional mechanisms
like directed active movement due to external fields, e.g.,
chemotaxis to a chemical field gradient, gravity, or cell po-
larity. CPM applications include modeling mesenchymal
condensation �25,28,29�, the complete life-cycle of Dictyos-
telium discoideum �30�, tumor growth �31�, vascular devel-
opment �32�, immune response, and limb growth �33�. Un-
like the simple Turing mechanism where cells have no
feedback on the chemical field, most CPM implementations
include this feedback which can give rise to completely dif-
ferent patterning from the Turing mechanism. In the CPM,
patterns can arise under the influence of a single chemical
field �13� due to cell movement, biased by gradients in cell-
cell adhesion and cell-ECM binding, which is impossible in
Turing mechanism. This unique mechanism also differs from
chemotaxis, which requires long-range cell movement �28�.

All existing CPM implementations suffer from four main
limitations: �1� They do not include viscous dissipation ex-
plicitly. Instead dissipation arises from the Metropolis-
Boltzmann energy-minimization dynamics. This implicit dis-
sipation makes viscosity hard to calculate or control. �2�
They do not explicitly describe force transduction through
cells, which arises through the volume constraint and surface
constraint �if used� of the Hamiltonian. �3� Aggregates of
cells modeled with an ordinary CPM Hamiltonian are highly
overdamped. Modeling the ECM or fluid as an array of gen-
eralized cells using the normal CPM produces a flow resem-
bling the overdamped flow of biological fluid but this fluid
slips at solid surfaces and exerts no shear force unlike a
normal fluid. An alternative approach which describes the

fluid as a single, large, unconstrained generalized cell pro-
duces nonlocal movement. Moreover, it cannot advect
chemicals or transmit shear forces. �4� The CPM has no in-
trinsic concept of rigid-body motion. We will describe an
algorithmic solution to this last problem, which makes the
CPM look more like a FE simulation, in a future paper.

All of these problems result from the CPM spins being
tied to the underlying lattice, rather than to objects they de-
scribe. The solution in each case is to adopt a FE approach
suited to the CPM, which takes the behavior off lattice. Ap-
plying standard off-lattice methods in the CPM has inherent
problems. Since in the CPM cell movement occurs by
boundary fluctuations, connecting normal FE fluid solvers to
the CPM at surfaces requires local grid refinement during
cell movement to avoid numerical instabilities. Hence its
computational cost is high.

To introduce advection diffusion in the CPM correctly
and efficiently, we propose an off-lattice scheme consistent
and in harmony with the CPM algorithm. We subdivide the
ECM into small fluid particles having the normal properties
of generalized cells like differential adhesivity, a surface con-
straint and a volume constraint. The fluid particles carry
chemical morphogens and we assume the concentrations are
uniform inside them. Diffusion occurs between neighboring
fluid particles by local averaging rules which approximate
the Laplacian. Spin flips in the CPM occur only at the
boundaries of the cells or particles. A force on the fluid in
any direction due to pressure gradients or external forces
biases the probability of spin flips and generates directed
motion �34�. We introduce viscosity into the CPM by explic-
itly including in the Hamiltonian including a relative-
velocity constraint between the neighboring fluid particles.
This scheme allows us to solve the ADEs and generates the
creeping flow of a highly viscous fluid.

In most biologically relevant regimes �e.g., E. Coli in wa-
ter�, we encounter low Reynolds number �Re� flow �10−5,
with the typical diffusion coefficient of chemical morpho-
gens being �10−4 �m2/s. Thus the Peclet number �defined
as R� /D, where R ,� ,D are typical size of the system, the
typical fluid velocity, and diffusion coefficient, respectively�
is as low as �10−2 �35�. We explicitly exclude blood flow in
the circulatory system, where Re numbers �hence inertia� can
be quite large and where specialized solution techniques al-
ready exist. Since most CPM simulations do not demand
high precision, sophisticated methods like mimetic finite dif-
ference �36� become a computational bottleneck without
many advantages. On the other hand, our ADE scheme is
very stable, with spatial resolution equal to the mean diam-
eter of the fluid particles, which are much smaller than the
simulated biological cells. Our scheme seamlessly integrates
into the main Monte Carlo loop of the CPM simulation and
boundary conditions like absorbing boundaries or no-flux
boundaries are simple to implement. More-over our off-
lattice scheme does not require remeshing. We discuss these
issues in detail below.

This paper mainly focuses on the validity and utility of
the CPM ADE solver. Section II briefly describes the CPM
along with the diffusion and advection scheme. Section III
discusses various cases, including diffusion from two point
sources, a continuous source, and a moving source with ei-

DAN et al. PHYSICAL REVIEW E 72, 041909 �2005�

041909-2



ther reflecting or absorbing boundary conditions and the flow
profile in Poisueille’s flow. Section IV outlines future direc-
tions in developing the ADE scheme. We will address in a
future paper certain additional conditions, flow with inertia,
effects of low or high Peclet numbers, constitutive properties
of the fluid phase, etc. As we have stated before, ours method
provides flexibility and efficiency in the biologically relevant
regime of low Peclet and Reynolds numbers and where high
numerical accuracy is not crucial.

II. MODEL

The Potts model is an energy-based, lattice cellular-
automaton �CA� model equivalent to an Ising model with
more than two degenerate spin values. We typically use a
cubic lattice with periodic or fixed boundary conditions in
each direction. We use third or fourth nearest neighbor inter-
actions to reduce lattice-anisotropy induced alignment and
pinning. Each lattice site in the Potts model has a spin value.
The energy, or Hamiltonian sums the interaction energies of
these spins, according to predefined rules. In single-spin dy-
namics �like Metropolis dynamics� the spin lattice evolves
toward its equilibrium state by minimizing the interaction
energy through spin flips. Multispin dynamics like Kawasaki
dynamics are also possible. Though the original Potts model
studies focuses on equilibrium properties, it can also model
quasiequilibrium dynamical properties �37�. Using determin-
istic schemes for spin flips, patterns often stick in local
minima. Finite-temperature Monte Carlo schemes circum-
vent this problem. These schemes accept a spin flip with
temperature dependent Boltzmann or modified Boltzmann
probability if the configuration encounters a potential barrier
�a greater energy after the spin flip than before� �37�.

We pick a target lattice site at random and one of its alien
neighbors, also selected at random and attempt to flip the
target spin to the value of the selected neighbor. In the modi-
fied Metropolis algorithm we employ, if the spin flip would
produce a change in energy �H, we accept the change with
probability P given by

P��H� = �exp�− �H/T� if �H � 0,

1 otherwise,
� �2�

where T is the fluctuation temperature. T controls the rate of
acceptance of the proposed move. For very large T, all the
moves are accepted and the dynamics is a random walk in
the absence of barriers, i.e., interaction energies included in
the Hamiltonian are effectively zero producing a disordered
phase. For very small values of T the dynamics is determin-
istic and can trap in local minima. We choose T as the me-
dian value of the distribution of �H, which is below the
order-disorder phase transition temperature. All of our results
are very robust with respect to a variation of T. S. Wong has
recently shown that optimizing the dynamics of the modified
Metropolis algorithm requires changes to the acceptance
probability in Eq. �2� �38�. However, we do not implement
these changes here. Our unit of time is Monte Carlo sweep
�MCS�, where 1MCS=L3 spin flip attempts, L being the sys-
tem size.

The CPM adapts the Potts model to the context of biol-
ogy. A CPM cell is a collection of lattice sites with same spin
value �or index� �i. Each cell has a unique spin � �see Fig.
1�. Cells may also have additional characteristics, e.g., a type
�. Links between different sites with spins define cell bound-
aries. So cells have both volume and a surface area. The
volume, area, and radius relations are highly non-Euclidean
for small cells.

The CPM Hamiltonian contains a variable number of
terms. The interaction between pairs of biological cells in-
volves an adhesive or repulsive interfacial energy. This inter-
facial energy is precisely the Potts energy, the sum of the
interactions of neighboring unlike spins, across a link. Each
mismatched link contributes a cell-type dependent binding
energy per unit area J�� ,���, where � and �� are the type of
cells on either side of the link. In the CPM the effective
cell-cell interaction energy is

Eadhesion = �
�i,j,k�,�l,m,n�neighbors

J����i,j,k�,���l,m,n��

		1 − 
���i,j,k�,��l,m,n��
 , �3�

where 
���,��=1 if ��=�, otherwise 
���,��=0.
At any time t, a cell, of type � has a volume ��� , t� and

surface area s�� , t�. The volume is simple to define, ���0�
=�i,j,k
��0,��i,j,k��, whereas surface area is more complex,
since it depends on the interaction range of the lattice,
s��0�=�i,j,k
��0,�i,j,k��i�,j�,k�	1−
���i,j,k�,��i�,j�,k���
, where
�i , j ,k� and �i� , j� ,k�� are neighboring lattice sites. Each cell
has an effective volume elasticity, �� and target volume
�target�� , t�. Larger values of ��, produce less compressible
cells. We typically choose �target

2 ��� other constraint ener-
gies. This compressibility makes little difference in low Rey-
nolds number flow but makes pattern evolution less stiff. We
also define a membrane elasticity �s and a target surface area
starget�� , t� to maintain the generalized shape of the cells. The
energy contributions due to surface and volume fluctuations
are

Esurface = �s�s��,t� − starget��,t��2, �4�

Evolume = ������,t� − �target��,t��2. �5�

We can extend the Hamiltonian to include a uniform ex-

ternal force F� , acting on all cells by including the term

FIG. 1. A typical cell configuration in CPM. The bold lines
denote cell boundary.
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Eforce = − �
�ijk�,�lmn�neighbors

F� · r�i,j,k�1 − 
��i,j,k�,��l,m,n�� , �6�

where r�ijk is the position vector at the lattice site �i , j ,k�.
Previous CPM applications often treated fluid or ECM as

a single large cell with no constraints. Here we take the
coarse-grained approach to describe ECM. We assume the
ECM consists of hypothetical fluid cells �which we call par-
ticles to avoid confusion with the modeling of biological
cells� having all the characteristic interactions and con-
straints of regular CPM cells. The volume constraint and the
surface tension determine the elastic nature of the fluid. The
fluid particles can move with respect to one another like a
regular CPM cell via spin flips. Thus, local pressure devel-
oped due to movement or enlargement of actual biological
cells will translate into motion of the surrounding ECM. This
fluid motion causes advection and mixing along with mo-
lecular diffusion of chemical morphogens. We restrict con-
sideration to the highly overdamped viscous world that most
biological cells experience, so our fluid particles lack inertia.
We also restrict to situations where the velocity of movement
is much less than the velocity of sound, which is one lattice
unit per MCS.

We now introduce a relative velocity constraint between
the cells/particles which faithfully captures the effects of
shear due to the viscosity of the medium. In the CPM, ve-
locity is a cell property defined as the displacement of the
center of mass of the cell per MCS. Since the velocity gra-
dient terms in the direction of the flow �e.g., �ui /�xi� are the
rate of change of volume �40� which Eq. �5� already in-
cludes, we need to keep only the contributions of cross terms
of the form ��ui /�xj�2. In an incompressible fluid �� ·u=0�
the cross terms are the dissipation energy per unit volume
�6�. In the CPM we model this term as

Eviscosity

= �viscosity�
i

�
j

Sij

�Vix
− Vjx

�2

dij
2 ��yi − yj�2 + �zi − zj�2

dij
2

+ cyclic permutation of �x,y,z� , �7�

where the j’s are the indices of cells neighboring the ith cell
and dij =��xi−xj�2+ �yi−yj�2+ �zi−zj�2 is the distance be-
tween the centers of cell i and cell j. Vix

is the x̂-component
of the velocity of the ith cell. Since the cells are of irregular
shape, we further weight the energy penalty by the cells
common contact area Sij. We ensure that the cells are simply
connected by using local connectivity checks during spin flip
attempts. �viscosity corresponds to the viscosity coefficient �
in the Navier-Stokes equations. � has dependence on other
system parameters like J, �volume, and �surface.

The net Hamiltonian including fluids is then

H = Eadhesion + Esurface + Evolume + Eviscosity. �8�

A. Diffusion scheme

Since the motion of the fluid particles takes care of ad-
vection, we need only to solve the diffusion on the current

fluid particles configuration; �C�x� , t� /�t=D�2C�x� , t�, where
we have assumed that the diffusion constant D is constant
and isotropic. Including an anisotropic or spatially varying D
is a trivial extension of our method. We assume that the fluid
particles carry chemical morphogens, whose distribution is
uniform over a given fluid particle. Equivalently we can as-
sociate the chemical concentration with the center of mass of
the particles and think of the diffusion as taking place be-
tween them �a FE view�. Because the shape and volume of
the fluid particles are irregular, their centers of mass do not
correspond to lattice points. We then need a numerical
scheme for diffusion among fluid particles. Few existing al-
gorithms solve diffusion on a random or irregular lattice. The
more sophisticated and accurate ones are computationally
expensive �36�. We use a naive iterated Euler method, which
is fast and stable and reproduces different biological experi-
ments with good qualitative and fair quantitative accuracy.
We could of course, use a more elaborate scheme, if neces-
sary. We locally average the concentration among the parti-
cle’s nearest neighbors. The particle neighbors change as the
fluid flows. We approximate the Laplacian �2C�r� , t� �where
C�r� , t� is the chemical concentration and r� is the center of
mass coordinate of a fluid particle� by �39�

D�2Cj�t� � D �
i next to j

�Ci�r�,t� − Cj�r�,t��
R2 , �9�

where R is the average radius of the fluid particles assuming
them to be spherical �R= ��i=1

N Vi
1/3� /N�, and Ci�r� , t� is the

concentration in nearest neighbor fluid particles. We use R2

instead of �r�i−r� j�2 to avoid Neumann instability. We can up-
date the concentration once or multiple times per MCS de-
pending on the diffusion coefficient of the chemical morpho-
gen. D along with the number of concentration updates per
MCS controls the diffusion constant. For larger diffusion co-
efficients we update the diffusion step multiple times per
MCS. For typical chemical morphogens like cAMP the dif-
fusion constants are �10−4 �m2/s, corresponding to a
spread of 3�2. 	10−4 �m�0.04 �m� per MCS. The typical
lattice spacing in our CPM corresponds to 0.1–1.0 �m,
hence a fluid particle has a width of �0.3–3.0 �m. There-
fore a very small amount of chemical needs to diffuse among
adjacent fluid particle per MCS. In fact, for most practical
purposes we need at most one diffusion step per five to ten
MCS. Both reflecting and constant concentration �zero con-
centration is absorbing� boundaries are simple to implement.
For reflecting boundary condition we exclude from the ex-
change of concentration �Eq. �9�� any particle whose bound-
ary is reflecting. For absorbing boundary condition �constant
concentration�, we define the particles whose boundaries are
absorbing to always have zero concentration. The algorithm
handles moving boundaries automatically and conserves
chemical concentration, unlike many other methods.

III. RESULTS AND DISCUSSION

A. Poiseuille flow

We first discuss simulating Poiseuille flow of a viscous
fluid in a cylindrical tube with rigid walls under a uniform
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force field �body force� using the CPM. We consider a cylin-
drical tube with a circular cross section of radius 18 lattice
units and length 200 lattice units with periodic boundary
condition along the length. Each fluid particle has an average
volume of 64 lattice points. Our CPM AD scheme works for
small forces when the fluid particles remain simply con-
nected. Figure 2 plots the ensemble averaged �50 different
initial configurations� cross-sectional profile of the viscous

flow at x=150 and t=2000 MCS with a small force F�

=0.05x̂ applied on all the fluid particles. The flow is in the x
direction only.

The profile is parabolic as expected. We also show its fit
to the analytical solution V�r�=F /4�R2�1− �r /R�2�, where �
is the viscosity �a fitting parameter�, R=18 is the radius of
the cylinder, and r is the distance from the axis of the cylin-
der. What is surprising is the excellent agreement �an error of

5% with the analytical result despite the coarseness� of the
simulation �only 9 particles across the diameter�. All lattice
points inside a fluid particle have the same velocity, so re-
gions where the shapes of the fluid particles are regular for
most ensembles will produce plateaux in the velocity profile.
Since in the CPM, the velocity of fluid particles is the center
of mass velocity, a lattice point touching a boundary wall
will have a small nonzero velocity as the center of mass of

the corresponding particle lies in the interior �slip boundary�.
Since the energy contribution of the constraints near a
boundary wall dominates the external applied force and the
Monte Carlo temperature, boundary particles are more regu-
lar in shape than interior particles. This regularity holds in all
ensembles, hence the rms error in the velocity near a bound-
ary wall is small as shown in Fig. 3�b� and the velocity just
near the boundary in Fig. 2 has a small plateau. Reducing the
size of the fluid particles compared to the typical length
scales of the flow reduces these anomalies. Increasing
�viscosity increases the viscosity coefficient �. A future paper
will study the relation between � and �, Monte Carlo tem-
perature, fluid particle size, etc. We shall also show addi-
tional biologically relevant hydrodynamic flows.

We next verify our diffusion scheme under various bio-
logically relevant conditions. CPM models using the modi-
fied finite temperature Metropolis algorithm have diffusion
due to the movement of the CPM cells themselves which
adds to the diffusion of chemical morphogens. However for
most CPM simulations, e.g., a temperature 0.1 and other pa-
rameter values used throughout this paper, the diffusion co-
efficient of the CPM cells is �10−4 pixel2/MCS, which is
much smaller than the typical diffusion coefficient of �0.1
that we treat in this paper. Hence for pure diffusion in a static
medium the fluid is effectively fixed. Besides the concentra-

FIG. 2. �Color online� �a� Velocity profile in a cylindrical flow under gravity and its fit to the analytical solution. �b� Velocity profile
across a diameter of the tube with error bars, the bold segment along the x̂ direction denotes the width of a fluid particle.

FIG. 3. �a� The absolute error between the analytical solution Vanalytical and the CPM simulation Vsimulation at x=150. �b� The rms error of
over 50 ensembles.
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tion profile of the diffusing chemical in a medium, diffusion
in the presence of boundaries, and moving source is crucially
important in biology. We show that the results of our simple
CPM diffusion from CPM agree very well with correspond-
ing analytical calculations or finite element results. We also
briefly discuss the validity of our method for diffusion in
Poiseuille flow.

The four cases we discuss below employ fluid particles
with a target volume �target=27, unless we mention other-
wise. The lattice has 100	100	100 sites. We equilibrate
and quench to remove any disconnected cells which the
finite-temperature equilibration produces �27�. In our model
a chemical source at a given lattice point gives all lattice
points which belong to the fluid particle containing that cho-
sen point the same concentration. We apply one diffusion
step per MCS. The first three cases are for static fluids.

B. Two sources with reflecting and absorbing
boundaries

We consider two point sources at 15, 50, 50 and 50, 50,
50 with initial concentrations �at t=0� of 5 and 10, respec-

tively. The chemicals diffuse from these instantaneous
sources. The bounding planes of the cube are reflecting. Fig-
ure 4 plots the corresponding one-dimensional diffusion pro-
file projection �with no ensemble average� after elapsed
times t=50, 100, 200 MCS, and fitted to the exact solution

C�x,t� = 10.0/ � �4�Dt��exp�−�x − x1�2�/4Dt

+ exp�−�2L1 − x − x1�2�/4Dt + exp�−�2L2 − x − x1�2�/4Dt�

+ 5.0/ � �4�Dt��exp�−�x − x2�2�/4Dt

+ exp�−�2L1 − x − x2�2�/4Dt + exp�−�2L2 − x − x2�2�/4Dt� ,

D being a fit parameter. Here L1 and L2 are the coordinates
of the two reflecting boundaries and x1 and x2 are the coor-
dinates of the instantaneous sources. The diffusion profile
matches very well at all times, even near the boundaries. The
maximum relative error �compared to the exact solution� at
t=50 MCS is 5%, again, surprisingly good for such a coarse
simulation. We discuss errors in detail for absorbing bound-
ary conditions in the next paragraph. The inset shows the
variation of the diffusion coefficient calculated from fitting to

FIG. 5. �Color online� Chemical profile pro-
jected on the x axis from diffusion of two instan-
taneous point sources for an absorbing barrier at
x=0 and x=100 for t=70, 100, and 200 MCS.
The inset shows the variation of D with fluid par-
ticle volume on a log scale.

FIG. 4. �Color online� Sym-
bols denote chemical profile pro-
jected on the x axis �summing in
the Y and Z directions� at t=50,
100, and 200 MCS for reflecting
barriers at x=0 and 100 denoted
by symbols. The solid line is a fit
to the exact solution using the fit-
ting parameter D. The inset shows
variations in D with time, due to
coarse graining and the initial
sharp distribution.
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the exact solution as a function of time. Though the diffusion
constant should remain constant with time, we observe a
5–6 % variation from the asymptotic value at small times due
to the sharp initial distribution producing structures smaller

than the fluid particle scale of our coarse-grained scheme.
We also studied the variation of the diffusion coefficient D as
a function of the target volume of the fluid particles. D is
constant for variations over one order of magnitude of the

FIG. 6. �Color online� Relative error along the
x lattice direction for an absorbing barrier.

FIG. 7. �Color online� Chemical profile cross
section along z=40, 50, and 60 in the presence of
a cylindrical reflecting barrier with axis along the
x̂ direction and rectangular cross section. The
sources with initial concentration 5 and 10 are
placed at 50, 40, 40 and 50, 60, 60. The inset
shows 2D projection of the profile. The lower fig-
ure shows a two-dimensional projection obtained
from finite element calculations. The concentra-
tion decreases as we go away from the center
contours �yellow lines�.
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target volume of the fluid particles as shown in the inset to
Fig. 5. Figure 5 also shows the chemical profile for an ab-
sorbing barrier at x=0 and x=100. The figures show that the
diffusion coefficient for both reflecting and absorbing barri-
ers cases is same. Hence for a wide range of fluid particle
volumes, our CPM ADE algorithm faithfully reproduces dif-
fusion from two point sources.

Figure 6 plots the relative error as a function of position at
different times. As mentioned in the last paragraph the sharp
distribution at the initial time produce errors large compared
to later time, i.e., if we ignore the large errors in the tail �as
the magnitude of concentration is extremely small in the
tails� the relative error at t=150 is 
5% whereas at t=500 it
is 
0.5%. In the actual biological situation, cells secrete
chemical morphogens over their whole membrane surface
and hence such singular cases of high point concentration of
chemical rarely occur.

C. Two sources with a reflecting obstacle inside the medium

Since biological cells can be impermeable to many chemi-
cal morphogens, they can act as reflecting boundaries within
the fluid medium. We check this situation for the simple test
case of a cylindrical barrier with rectangular cross section

�15	15, pixels centered at �50, 50, 50� and the axis along
the x direction� within the fluid medium. As in the previous
case, we place two point sources near the two opposite cor-
ners of the rectangle at �50, 40, 40� and �50, 60, 60�.

We recover the same diffusion coefficient as in the previ-
ous case. Figure 7 plots the one-dimensional cross section of
the diffusion profile at three different z positions. Along z
=40 and 60 the barrier is absent and the diffusion is merely
the superposition of that from the two sources. Along z=50
we see the effect of the reflecting barrier. The inset on the
right side shows the concentration profile obtained from a
finite element calculation for this situation which matches
very well with the CPM concentration profile in the left in-
set.

D. Moving continuous source

Moving cells often secrete morphogens. Hence we cor-
rectly simulate cells’ chemotactic response to secreted
chemicals only if we faithfully reproduce diffusion from
moving sources. To test our simulation we assign an arbitrary
fluid particle a constant concentration C0 �continuous source�
and uniform velocity � along the x direction. We keep the
source sufficiently distant from the boundary to avoid bound-

FIG. 8. �Color online� CPM simulation of the
chemical profile from a moving source �the other
two coordinates integrated out� at t=300 MCS.
The solid line denotes the fit to Eq. �10�. The
inset shows a two-dimensional projection of the
simulation, where red denotes the highest chemi-
cal concentration and black the lowest.

FIG. 9. �Color online� Effective diffusion co-
efficient for mean flow velocities �̄=0.056, 0.028,
and 0.016, respectively from top to the bottom
curve. The solid lines show the analytical results
corresponding to above mean velocities.
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ary effects. At t=0 the source is at x=35 and moves with
velocity u=0.04 pixel/MCS. We fit the CPM chemical pro-
file projection in the x direction �no ensemble average� with
the 1D analytical solution

��x� = ��x − x0�2�/�4D� , �10�

� = u2/�4D� , �11�

��x� = exp��x − x0�u/�2D�� , �12�

C�x,t� =
C0

2
��x��exp�2���x����Erfc
���x�

t
+ ��t�

�13�


 + exp�− 2���x���Erfc
���x�
t

− ��t� . �14�

Figure 8 shows that the CPM diffusion agrees very well
with the analytical solution. The diffusion coefficient ob-
tained from the fit is D=0.29.

E. Taylor-Aris dispersion in Poiseuille flow

We check the qualitative agreement of the dispersion co-
efficient obtained using our CPM ADE solver for Poiseuille
flow along the x direction �described in Sec. III A� in a cy-
lindrical geometry. We compare our result for an initial delta
distribution of chemical in the middle of the tube. After an
initial transient, so that the chemical reaches the boundary in
the y and z directions, we compare the diffusion coefficient
of chemical distribution along the x direction with the ana-
lytical result for the effective diffusion coefficient in Poi-
seuille flow along the cylinder axis, i.e., Deffective=D0

+ �̄2R2 /48D0. Here D0 is the diffusion coefficient in the ab-
sence of flow, �̄ is the average velocity, and R is the radius of
the cylinder. Figure 9 shows our results where we have plot-
ted the variation of effective diffusion coefficient with time
�in MCS� for different mean velocities. For the analytical
results given in solid lines in Fig. 9, we use the mean veloc-
ity obtained from the fit of the velocity profile as shown in
Fig. 2. Figure 10 shows snapshots of chemical profile after
500 MCS for D0=0 and D0=0.12. In this case, we start with
a thin sheet of chemical in the x-z plane, at x=75, i.e., all the
particles at x=75 have uniform concentration. We take a cut
at y=20 to see the evolved chemical profile. A detailed study
of evolution of chemical profile, effect of embedded objects
like sphere under both stationary and moving conditions will
be reported in our future communication.

IV. CONCLUSIONS

We have implemented fluid flow, advection, and diffusion
in the framework of the CPM, avoiding the programming
complexity and computational demands associated with
implementing a finite-element or finite-difference Navier-
Stokes simulation and interfacing it with the CPM lattice.

We have used three biologically relevant test cases to
verify our method. All our results for diffusion in the pres-
ence of boundaries or moving sources agree very well with
corresponding analytical or finite-element solutions. The er-
rors in our scheme are large if we try to probe far below the
diffusion time scale or the fluid particle length scale, but the
results are qualitatively correct. Thus we must be cautious
when applying this scheme to large Pe number flows. The
requirement that fluid particles remains connected, limits the
method to low Re. However, since most biological mecha-
nisms operate at low Re our CPM ADE solver is appropriate
for many cell-level simulations.
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